顯示具有 SQL 標籤的文章。 顯示所有文章
顯示具有 SQL 標籤的文章。 顯示所有文章

2024年5月16日 星期四

Using RStudio to Connect MySQL

RWEPA | 使用 RStudio 連結MySQL

# 感謝 Uma 提供問題.








🌸YouTube (包括中文字幕)https://youtu.be/jsdM-y1nspQ


🌸【謝謝訂閱、按讚、分享與開啟小鈴鐺💡】

大綱:
1.MySQL 安裝
2.MySQL Workbench
3.MySQL Shell
4.RStudio 連接MySQL三大方法: 使用 odbc 套件

方法1 使用 RStudio \ Connections 視窗

方法2 使用 odbc::dbConnect+寫入密碼 --> 資安問題!

方法3 使用 odbc::dbConnect+詢問密碼

🌷下載: r_mysql.pdf

https://github.com/rwepa/r_mysql/blob/main/r_mysql.pdf

🌷下載: r_mysql.R

https://github.com/rwepa/r_mysql/blob/main/r_mysql.R

#mysql
#sql
#odbc
#rstudio

2022年8月28日 星期日

Python 連接 Microsoft SQL Server

Python 連接 Microsoft SQL Server (Windows 10)

感謝 Jian-Guo 提供問題.






系統:

Windows 10, Microsoft SQL Server 2019 Developer Edition, Python 3.9.12

目標:

在 Windows 系統中, 希望使用 Python - sqlalchemy 模組, 連結 Micorosft SQL Server.

方法:

步驟1: 下載 Microsoft SQL Server

首先至 Microsoft SQL Server 的網頁下載並安裝 SQL Server [https://www.microsoft.com/en-us/sql-server/sql-server-downloads], 參考下圖下載 SQL Server 2019 Developer.

















參考下圖 SQL Server 安裝執行畫面.















如果想使用 R 連接 Microsoft SQL Server, 請參考 [http://rwepa.blogspot.com/2013/08/rodbc-sql-server.html].

步驟2: 下載並安裝 sqlalchemy 模組

方法1: conda install -c anaconda sqlalchemy
方法2: pip install sqlalchemy

步驟3: 使用 sqlalchemy 模組連結 Microsoft SQL Server

# sqlalchemy_sql.py
import sqlalchemy
print(sqlalchemy.__version__) # 1.4.32

from sqlalchemy import create_engine
import pandas as pd

Server = 'localhost'
Database = 'Northwind'
Driver = 'ODBC Driver 17 for SQL Server'
Database_Con = f'mssql://@{Server}/{Database}?driver={Driver}'

engine = create_engine(Database_Con)
con = engine.connect()
con

df = pd.read_sql_query('SELECT * FROM Employees', con)
df.iloc[0:3,0:4]
###

執行畫面:















# end

2021年3月2日 星期二

Python統計分析與最佳化計算課程

課程介紹:

課程採用免費Python軟體為主,主題包括基礎的資料結合、資料摘要與繪圖技巧、統計檢定、邏輯斯迴歸、高維度影像資料計算、線性與非線性最佳化應用。課程將透過案例示範與實際操作練習以增進學習成效。

課程目標:

使學員熟悉Python語言進行統計分析與最佳化計算,課程包括Python與資料庫連結、資料摘要與繪圖技巧、統計分析、線性與非線性模型最佳化計算。

報名: https://www.beclass.com/rid=2443e965faa62b76ba01



2019年10月6日 星期日

VirtualBox 安裝 Windows 10 虛擬機器

2022.5.1 更新:
Windows 11 企業版 (評估)版
使用 Windows Hyper-V 執行較 VirtualBox 快速.

使用R的資料分析程序中, 可能會搭配不同軟體的測試需求, 例如: Windows 10 作業系統中使用不同版本的 R, Python, Julia, Microsoft SQL Server, Microsoft Visual Studio, Power BI, Tableau等軟體. 如果在實體 Windows 作業系統中, 不想安裝過多的軟體而影響 Windows 效能, 此時可考慮使用虛擬機器技術, 虛擬機器軟體包括 Oracle VirtualBox,  VMware Player, Hyper-V, 本篇以免費 VirtualBox 軟體為主說明其安裝與使用方式.





# Windows 10
# VirtualBox
# R
# Python
# SQL

使用 VirtualBox 軟體, 安裝 Windows 10 虛擬機器之三大步驟:

步驟1. 下載 VirtualBox


  • 選取 Windows hosts, 另存新檔 VirtualBox-6.0.12-133076-Win.exe
  • 安裝上述執行檔
  • 安裝完成後, 可點選剛才下載網頁的 VirtualBox 6.0.12 Oracle VM VirtualBox Extension Pack, 此為擴充軟體, 請一併下載安裝.


步驟2. 下載 Windows 虛擬機器檔案

  • 將 MSEdge.Win10.VirtualBox.zip 解壓縮至某資料夾, 本例為 MSEdge.Win10.VirtualBox 資料夾, 資料夾只有一個檔案 MSEdge - Win10.ova

步驟3. 安裝並啟動 Windows 10 VM

  • 檔案總管 --> 選取MSEdge - Win10.ova --> 右鍵 --> 開啟檔案 VirtualBox Managers
  • 修改適當的名稱, 本例: Win 10
  • 按匯入

  • 等待匯入VM


  • 匯入完成後, 左側清單會顯示 Win 10 虛擬機器, 點選 Win 10, 按下啟動
  • 啟動 Windows 的資料如下, 密碼第6個字元是數字零:
    帳號: IEUser
    密碼: Passw0rd!
  • 啟動 Windows 10 畫面如下, 可以安裝測試軟體 ^_^

  • 如果想要刪除此虛擬機器或不想再使用此VM,  點選左側清單 Win 10 --> 右鍵 \ 移除, 結果會有三個選項:
  1. 刪除所有檔案: 虛擬機器檔案(C:\Users\使用者名稱\VirtualBox VMs\Win 10 資料夾)與左側選項會同時刪除.
  2. 只移除: 只有刪除左側選項
  3. 取消: 關閉移除視窗
# 開機自動啟動帳號: Win+R \ netplwiz \ 按 OK
# end

2018年4月7日 星期六

R資料匯入與匯出

R資料匯入與匯出

# read.table
# read.csv
# read.fwf
檔首無BOM
# readxl 套件
RODBC 套件
# lapply
# do.call

本篇說明資料匯入與匯出。首先介紹ETL概念,其次介紹常用的資料檔案,包括文字檔案、Excel檔案、資料庫資料、JSON檔案。資料庫的匯入將以Microsoft SQL Server說明為主。最後以單一檔案較大者的「大型資料」匯入與檔案數目較多者的「大量資料」匯入等議題做為本篇的結束。


1. ETL簡介


隨著科技的進步,企業經常面對資料處理、轉換或整合等應用。「ETL (Extract-Transform-Load)擷取轉換載入」是資料分析中的基礎的應用,最早興起於1970年資料倉儲中資料庫的處理程序。ETL表示資料由資料來源端擷取 (Extract) 出來,經過轉換 (Transform),再載入 (Load)到目的端的資料傳輸整體過程。進行ETL程序時,常用串流方式方法避免資料讀取時記憶體耗盡,參考圖1所示。


圖1 ETL流程圖

擷取:從各種不同的資料來源中,將資料擷取出來。資料來源包括交易型資料庫,同質資料與異質資料來源,資料擷取具有以下特性:

  1. 可能有各式各樣的資料來源和不同的資料格式,在利用程式語言開發或使用現有工具時,必須將來源資料轉換成共同資料格式。
  2. 擷取出來的資料,比對其格式和結構是否符合所需,例如:是固定欄位長度內容的資料、還是用區隔符號定義的資料。
  3. 擷取出來的資料若不符合所需,則依照相對應的規則以決定該採取何種反應,如:另外紀錄錯誤問題並發出警告,但整個ETL流程仍繼續執行。
  4. ETL作業能擷取一個檔案或同時進行多個來源端的資料擷取。

轉換:對資料進行適當的轉換,如型態轉換、字串相連、彙總運算等,本階段會將資料儲存成適當的格式,以利事後查詢與分析。這個步驟在 ETL 中不一定需要執行。

資料轉換具有以下特性:

  1. 可針對Excel、HTTP Web Page、XML、PDF與 Binary data 資料格式等檔案格式進行資料轉換。
  2. 基於商業邏輯上的需求,必須依照應用程式資料的特性來分類、匯總、轉換資料型態;或是把經年累月所聚集的歷史資料來作合併、統計、分折及計算。
  3. 本階段的轉換元件與功能通常是最多元、最豐富的,往往也是決定ETL產品的重要考量之一。
  4. 資料轉換就是將所擷取出之資料,交付予資料轉換元件(例:log資料轉換元件),逐一並循序地依照所設計好的規則進行轉換。
  5. 載入:將資料載入目的端,目的端通常是為了報表產製及商業智慧分析而最佳化的資料倉儲。

2. 文字檔案

常用的文字檔案包括以逗號分隔值檔案(Comma-Separated Values File,簡稱CSV File),其檔案以純文字形式儲存數字和文字資料。CSV檔案亦稱為字元分隔值檔案(Character-Separated Values File),因為分隔字元也可以不是逗號,例:分號(;)、Tab符號(–>)、bar符號(|)與空白字元。CSV檔案具有以下特性:


  1. 採用純文字,使用某個字元集,例:ASCII、Unicode、UTF-8或GB2312(簡體中文環境)等儲存。
  2. 每一橫列為一筆記錄組成。
  3. 每一筆記錄以分隔符號區分欄位。
  4. 每一筆記錄都具有相同的欄位順序。
  5. 在Windows環境中使用 Microsft Office Excel 等軟體執行 檔案\另存新檔\存檔類型\ 選取「CSV(逗號分隔)()*.csv」 \ 按儲存 即可儲存為CSV檔案。
  6. 開啟CSV檔案時,最後一列為空白列,該空白列須保留不可刪除,否則匯入至R/Python會有問題。參考圖2,其中第12列為空白列。


圖2 production.csv範例

範例1:匯入production.csv檔案。

CSV檔案匯入與資料分析工作包括以下五大步驟:


步驟1 設定工作目錄:

一般資料的匯入與匯出可以先考量工作目錄的概念。R/Python軟體具有工作目錄(Working Directory)概念,即預設讀取資料的目錄。以下說明以Windows 10作業系統與R軟體[https://www.r-project.org/]操作為主。使用getwd函數以取得工作目錄,設定工作目錄為setwd函數。本範例考慮工作目錄為「C:/rdata」。

setwd("C:/rdata")
getwd()
## [1] "C:/rdata"

步驟2 準備資料檔案:


本步驟為準備好即將匯入至R的資料檔案,一般初步使用建議將資料轉換為CSV檔案較方便於後續資料匯入。下載production.csv並儲存至C:\rdata。

資料來源:production.csv

步驟3 匯入資料:

常用匯入資料為read.table函數,使用彈性較大,read.csv函數為限用CSV檔案。本例使用read.table函數以匯入CSV檔案。“production.csv”表示檔案名稱,header=TRUE表示第一列為資料欄名稱,sep=“,”表示資料以逗號區隔欄位,stringsAsFactors=FALSE表示不會將字串自動轉換為因子(Factor),而保持原字串資料型態。匯入至R之資料物件名稱為production,資料顯示為10筆,5個欄位。如果匯入資料產生亂碼情形,則可考慮以下三種解決方式:

  1. 使用記事本等軟體,將資料另存新檔且編碼設定為ANSI。
  2. 在read.table函數中加入 fileEncoding=“UTF-8”或適當編碼。
  3. 在read.table函數中加入 encoding=“UTF-8”或適當編碼。


production <- read.table("production.csv", header=TRUE, sep=",", stringsAsFactors=FALSE)
production
##    工號 生產日期 機台 生產量 目標量
## 1     1 2017/4/1    A     50     60
## 2     2 2017/4/1    A     60     60
## 3     2 2017/4/1    A     40     60
## 4     2 2017/4/2    B     70    100
## 5     3 2017/4/2    B    120    100
## 6     3 2017/4/3    B     80    100
## 7     4 2017/4/3    C     30     50
## 8     1 2017/4/4    C     35     50
## 9     4 2017/4/4    C     60     50
## 10    2 2017/4/4    C     80     50

步驟4 資料分析:

資料匯入完成後,首要步驟是分別使用str函數與summary函數進行資料結構理解與統計摘要分析。int表示整數(Integer),chr表示字串(String)或稱為字元(Chacter)。summary函數會輸出以下6個統計量:

  1. Min :最小值(Minimum)
  2. 1st Qu :25百分位數,符號 Q1
  3. Median :中位數,符號 Q2
  4. Mean :平均數
  5. 3rd Qu :75百分數位,符號 Q3
  6. Max :最大值(Maximum)

str(production)
## 'data.frame':    10 obs. of  5 variables:
##  $ 工號    : int  1 2 2 2 3 3 4 1 4 2
##  $ 生產日期: chr  "2017/4/1" "2017/4/1" "2017/4/1" "2017/4/2" ...
##  $ 機台    : chr  "A" "A" "A" "B" ...
##  $ 生產量  : int  50 60 40 70 120 80 30 35 60 80
##  $ 目標量  : int  60 60 60 100 100 100 50 50 50 50
summary(production)
##       工號       生產日期             機台               生產量     
##  Min.   :1.0   Length:10          Length:10          Min.   : 30.0  
##  1st Qu.:2.0   Class :character   Class :character   1st Qu.: 42.5  
##  Median :2.0   Mode  :character   Mode  :character   Median : 60.0  
##  Mean   :2.4                                         Mean   : 62.5  
##  3rd Qu.:3.0                                         3rd Qu.: 77.5  
##  Max.   :4.0                                         Max.   :120.0  
##      目標量   
##  Min.   : 50  
##  1st Qu.: 50  
##  Median : 60  
##  Mean   : 68  
##  3rd Qu.: 90  
##  Max.   :100
# 新增達成率欄位,計算方式為生產量/目標量
production$達成率 <- round((production$生產量/production$目標量)*100)
production
##    工號 生產日期 機台 生產量 目標量 達成率
## 1     1 2017/4/1    A     50     60     83
## 2     2 2017/4/1    A     60     60    100
## 3     2 2017/4/1    A     40     60     67
## 4     2 2017/4/2    B     70    100     70
## 5     3 2017/4/2    B    120    100    120
## 6     3 2017/4/3    B     80    100     80
## 7     4 2017/4/3    C     30     50     60
## 8     1 2017/4/4    C     35     50     70
## 9     4 2017/4/4    C     60     50    120
## 10    2 2017/4/4    C     80     50    160

# 繪製達成率統計圖
plot(production$達成率, xlab="人次", ylab="達成率(%)", main="2018年達成率統計圖", type="b", sub="製表:RWEPA, March 12, 2018")



步驟5 匯出分析結果:

最後步驟是將分析的結果,包括文字與圖檔等進行資料匯出,常用的文字資料匯出函數是write.table與R專用資料格式(RData)save函數。本例使用write.table函數 匯出成production.output.csv檔案,使用save函數匯出成production.output.RData。

write.table(production, file="production.output.csv", sep=",", row.names=TRUE)
save(production, file="production.output.RData")

如果文字檔案是採用固定寬定方式儲存,則匯入資料時可採用  read.fwf 函數匯入。例:固定寬度檔案名稱是 myfix.txt,資料寬度分別為1, 2, 3個空白字元, 4個字元,則匯入方法如下,其中 -3 表示跳過3行不讀取:

read.fwf("myfix.txt", widths = c(1, 2, -3, 4))

3. Excel檔案

Excel檔案是常用辦公室資料檔案格式,除了以Microsoft Office Excel軟體進行操作,另外可使用readxl套件匯入Excel檔案並進行資料操作處理。

範例2:匯入 production.xlsx 檔案。

首先將範例1的 production.csv 另儲存成 production.xlsx。使用 excel_sheets函數理解工作表個數,使用 read_excel讀取工作表,其中mydf1,mydf2,mydf3結果皆相同。

library(readxl)
# 顯示工作表名稱
datasets <- "production.xlsx"
excel_sheets(datasets)
## [1] "production"
# 讀取Excel檔案
mydf1 <- read_excel(datasets) # 預設讀取第1個工作表
mydf2 <- read_excel(datasets, 1) # 指定第1個工作表
mydf3 <- read_excel(datasets, "production") # 指定工作表名稱

mydf1
## # A tibble: 10 x 5
##     工號 生產日期            機台  生產量 目標量
##    <dbl> <dttm>              <chr>  <dbl>  <dbl>
##  1  1.00 2017-04-01 00:00:00 A       50.0   60.0
##  2  2.00 2017-04-01 00:00:00 A       60.0   60.0
##  3  2.00 2017-04-01 00:00:00 A       40.0   60.0
##  4  2.00 2017-04-02 00:00:00 B       70.0  100  
##  5  3.00 2017-04-02 00:00:00 B      120    100  
##  6  3.00 2017-04-03 00:00:00 B       80.0  100  
##  7  4.00 2017-04-03 00:00:00 C       30.0   50.0
##  8  1.00 2017-04-04 00:00:00 C       35.0   50.0
##  9  4.00 2017-04-04 00:00:00 C       60.0   50.0
## 10  2.00 2017-04-04 00:00:00 C       80.0   50.0

mydf2
## # A tibble: 10 x 5
##     工號 生產日期            機台  生產量 目標量
##    <dbl> <dttm>              <chr>  <dbl>  <dbl>
##  1  1.00 2017-04-01 00:00:00 A       50.0   60.0
##  2  2.00 2017-04-01 00:00:00 A       60.0   60.0
##  3  2.00 2017-04-01 00:00:00 A       40.0   60.0
##  4  2.00 2017-04-02 00:00:00 B       70.0  100  
##  5  3.00 2017-04-02 00:00:00 B      120    100  
##  6  3.00 2017-04-03 00:00:00 B       80.0  100  
##  7  4.00 2017-04-03 00:00:00 C       30.0   50.0
##  8  1.00 2017-04-04 00:00:00 C       35.0   50.0
##  9  4.00 2017-04-04 00:00:00 C       60.0   50.0
## 10  2.00 2017-04-04 00:00:00 C       80.0   50.0

mydf3
## # A tibble: 10 x 5
##     工號 生產日期            機台  生產量 目標量
##    <dbl> <dttm>              <chr>  <dbl>  <dbl>
##  1  1.00 2017-04-01 00:00:00 A       50.0   60.0
##  2  2.00 2017-04-01 00:00:00 A       60.0   60.0
##  3  2.00 2017-04-01 00:00:00 A       40.0   60.0
##  4  2.00 2017-04-02 00:00:00 B       70.0  100  
##  5  3.00 2017-04-02 00:00:00 B      120    100  
##  6  3.00 2017-04-03 00:00:00 B       80.0  100  
##  7  4.00 2017-04-03 00:00:00 C       30.0   50.0
##  8  1.00 2017-04-04 00:00:00 C       35.0   50.0
##  9  4.00 2017-04-04 00:00:00 C       60.0   50.0
## 10  2.00 2017-04-04 00:00:00 C       80.0   50.0

範例3:參考圖3,使用Excel開啟CSV檔案會有亂碼情形。


圖3 CSV檔案亂碼

改善方式之一是考慮使用文字編輯軟體,修改編碼方式,本例使用免費軟體Notepad++,將編碼由原先的「編譯成UTF-8碼(檔首無BOM)」修改為「編譯成 UTF-8 碼」,再儲存檔案後使用Excel開啟即沒有亂碼,詳細參考圖4之設定。


圖4 CSV檔案亂碼-UTF-8


4. 資料庫資料


關於微軟(Microsoft)大量結構性資料匯入與匯出,Microsoft SQL Server提供以下工具:


  1. bcp公用程式 (bulk copy program): 提供大量資料匯入與匯出功能,可以由使用者指定格式,在 Microsoft SQL Server 執行個體與資料檔案之間大量複製資料。
  2. BULK INSERT 陳述式:可將資料直接從資料檔案匯入至資料庫資料表或非資料分割的檢視,不提供匯出資料功能。
  3. BULK INSERT 陳述式與 INSERT…SELECT * FROM OPENROWSET(BULK…) 陳述式 :將大量資料檔案匯入到 SQL Server 資料表中,不提供匯出資料功能。
  4. SQL Server Data Tools (SSDT) 來執行 SQL Server 匯入和匯出精靈。

資料來源:https://docs.microsoft.com/zh-tw/sql/relational-databases/import-export/bulk-import-and-export-of-data-sql-server

R可採用 RODBC 套件與Microsoft SQL Server資料庫連結,其中 sqlQuery 函數可執行資料匯入至R/R物件寫入SQL資料庫,部分執行畫面參考圖5,詳細參考 RODBC 與 SQL Server 資料匯入與寫入

圖5 RODBC-寫入


5. JSON檔案


JSON(JavaScript Object Notation)是一種由Douglas Crockford 構想和設計、輕量級的資料交換語言,該語言以易於讓人閱讀的文字為基礎,用來傳輸由屬性值或者序列性的值組成的資料物件。儘管JSON是Javascript的一個子集,但JSON是獨立於語言的文字格式,並且採用了類似於C語言家族的一些習慣,詳細參考官方網站[http://www.json.org/]

資料來源:https://en.wikipedia.org/wiki/JSON

JSON資料物件包括:

  1. 物件 object : {name:value}
  2. 陣列 array : [x1, x2, …]

JSON資料型態包括:

  1. 空值(null)
  2. 邏輯值(true, false)暨布林值。
  3. 數值(number),沒有區分整數與具有小數點數。
  4. 字串(string)。

RJSONIO 套件提供以下二大函數,詳細參考函數線上說明:


  1. toJSON() : 轉換 R 物件為 JSON 字串。
  2. fromJSON() : 轉換 JSON物件為 R 物件, 資料來源包括 URL, File, R物件。

JSON資料參考圖1.4.6 JSON-錄影節目影片範例。


圖6 JSON-錄影節目影片範例

資料來源:http://vida.moc.gov.tw/VIDA411.ASP?ISSUEYM=10306


6. 大型資料


大型資料指的是單一檔案較大,使用傳統read.table或read.csv函數可能匯入時間教長,此時可使用data.table套件的fread函數以提升匯入效能,詳細參考以下圖7 大型資料範例。



圖7 大型資料範例

上述大型資料亦可使用 bigmemory套件匯入資料,參考圖8 大型資料-bigmemory範例。



圖8 大型資料-bigmemory範例


7. 大量資料


大量資料指的是檔案較多時,使用傳統 read.table或 read.csv函數逐一匯入較不方便,此時可使用 lapply函數,詳細參考以下大量資料範例,考慮將三個檔案,每個檔案是10列5行,合併為單一資料物件30列5行。

lapply 函數主要包括2個參數 lapply(資料物件, 函數),其回傳結果是串列(list):

  1. 第一個參數是須要處理的資料物件,一般是向量資料,本例 files 表示三個檔案路徑。
  2. 第二個參數是函數,本例是 read.table,後續 header=TRUE, sep="," 是配合 raed.table使用。

do.call 函數是將三個串列合併為一個資料框(data.frame)。

# 大量資料範例
working_path <- "C:/rdata"
setwd(working_path)
getwd()
## [1] "C:/rdata"
sample1 <- iris[sample(1:nrow(iris),10),]
sample2 <- iris[sample(1:nrow(iris),10),]
sample3 <- iris[sample(1:nrow(iris),10),]

write.table(sample1, file="sample1.csv", sep=",", row.names=FALSE)

write.table(sample2, file="sample2.csv", sep=",", row.names=FALSE)
write.table(sample3, file="sample3.csv", sep=",", row.names=FALSE)

files <- dir(getwd(), pattern="sample.*.csv", recursive=TRUE, full.names=TRUE)

files
## [1] "C:/rdata/sample1.csv" "C:/rdata/sample2.csv" "C:/rdata/sample3.csv"

tables <- lapply(files, read.table, header=TRUE, sep=",") # list

sample.all <- do.call(rbind, tables) # data.frame

str(sample.all)
## 'data.frame':    30 obs. of  5 variables:
##  $ Sepal.Length: num  5.4 4.7 5.7 6.3 6.6 7 5 4.4 5.4 6.3 ...
##  $ Sepal.Width : num  3.9 3.2 2.8 2.5 3 3.2 3.6 3 3 2.5 ...
##  $ Petal.Length: num  1.7 1.3 4.1 5 4.4 4.7 1.4 1.3 4.5 4.9 ...
##  $ Petal.Width : num  0.4 0.2 1.3 1.9 1.4 1.4 0.2 0.2 1.5 1.5 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 2 3 2 2 1 1 2 2 ...
# end

2013年8月10日 星期六

RODBC 與 SQL Server 資料匯入與寫入

Problem:
如何將 R 資料寫入至 SQL Server 資料庫

Analysis:
針對 SQL Server 資料庫可採用 RODBC 套件, 其中 sqlQuery 指令可執行資料匯入至R與將R物件寫入SQL資料庫.

步驟 1


先在 ODBC 管理員中新增 SQL Server ODBC 資料來源, 考慮連結名稱是R_SQL2008」.
步驟 2
考慮某 Northwind 資料庫, 其中包括 Orders 資料表, 如下圖所示.

步驟 3
先執行 library(RODBC), 再利用 odbcConnect 連結至SQL Server ODBC 資料來源, 最後配合 sqlQuery SQL 指令將資料匯入至R. class 結果可知為資料框架物件(data.frame). 利用 table 指令可計算各運送國家的個數. 平均數 mean 亦可加以使用.

步驟 4
考慮 Shippers 資料表有3筆記錄.

步驟 5
利用 names 指令可了解資料表欄位名稱

步驟 6
在 sqlQuery 中配合 INSERT INTO  指令可將R資料寫入SQL 資料庫, 其中第一個欄位(ShipperID)為自動編號主索引鍵, 因此該欄位不用加在 INSERT INTO 指令中, 最後再次讀取資料已新增為4筆.

步驟 7
新增資料 INSERT 語法如下: 

完整R code:

# end
謝謝 R user- Chang 提供此問題.